Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.

1. $\left\{\begin{array}{l}x+3 y-2 z=17 \\ x-3 y-2 z=-1 \\ x+3 y+2 z=9\end{array}\right.$
[A] $\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & -3 & -2 \\ 1 & 3 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}17 \\ -1 \\ 9\end{array}\right] ;(4,3,-2)$
[B] $\left[\begin{array}{c}17 \\ -1 \\ 9\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & -3 & -2 \\ 1 & 3 & 2\end{array}\right] ;(5,3,-2)$
[C] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & -3 & -2 \\ 1 & 3 & 2\end{array}\right]=\left[\begin{array}{ccc}17 & -1 & 9\end{array}\right] ;(5,-3,-2)$
[D] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & -3 & -2 \\ -1 & -3 & 2 \\ 1 & -3 & 2\end{array}\right]=\left[\begin{array}{lll}17 & -1 & 9\end{array}\right] ;(4,-3,4)$

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
2. $\left\{\begin{array}{l}2 x+y+3 z=12 \\ 2 x-y-3 z=-8 \\ 2 x-y+3 z=16\end{array}\right.$
[A] $\left[\begin{array}{c}12 \\ -8 \\ 16\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}2 & 1 & 3 \\ 2 & -1 & -3 \\ 2 & -1 & 3\end{array}\right] ;$ dependent, infinitely many solutions.
[B] $\left[\begin{array}{ccc}2 & 1 & 3 \\ 2 & -1 & -3 \\ 2 & -1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ -8 \\ 16\end{array}\right] ;(1,-2,4)$
[C] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 3 \\ -2 & -1 & 3 \\ 2 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}12 & -8 & 16\end{array}\right] ;(1,2,-2)$
[D] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 3 \\ 2 & -1 & -3 \\ 2 & -1 & 3\end{array}\right]=\left[\begin{array}{lll}12 & -8 & 16\end{array}\right]$; inverse $=0$; no solution.

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
3. $\left\{\begin{aligned} 2 x+3 y-z & =-20 \\ 2 x-3 y+z & =0 \\ -6 x-9 y+3 z & =60\end{aligned}\right.$
[A] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}2 & 3 & -1 \\ 2 & -3 & 1 \\ -6 & -9 & 3\end{array}\right]=\left[\begin{array}{ccc}-20 & 0 & 60\end{array}\right]$; inverse $=0$; no solution.
[B] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}2 & -3 & -1 \\ -2 & -3 & -1 \\ -6 & -3 & 3\end{array}\right]=\left[\begin{array}{ccc}-20 & 0 & 60\end{array}\right] ;(-5,4,4)$
[C] $\left[\begin{array}{c}-20 \\ 0 \\ 60\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}2 & 3 & -1 \\ 2 & -3 & 1 \\ -6 & -9 & 3\end{array}\right] ;(-4,-4,-2)$
[D] $\left[\begin{array}{ccc}2 & 3 & -1 \\ 2 & -3 & 1 \\ -6 & -9 & 3\end{array}\right]\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-20 \\ 0 \\ 60\end{array}\right]$; dependent, infinitely many solutions.

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
4. $\left\{\begin{array}{l}2 x+3 y+z=-9 \\ 2 x-3 y-z=5 \\ 2 x-3 y+z=15\end{array}\right.$
[A] $\left[\begin{array}{c}-9 \\ 5 \\ 15\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}2 & 3 & 1 \\ 2 & -3 & -1 \\ 2 & -3 & 1\end{array}\right] ;(0,-4,5)$
[B] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}2 & -3 & 1 \\ -2 & -3 & 1 \\ 2 & 3 & 1\end{array}\right]=\left[\begin{array}{lll}-9 & 5 & 15\end{array}\right] ;(-1,4,-3)$
[C] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}2 & 3 & 1 \\ 2 & -3 & -1 \\ 2 & -3 & 1\end{array}\right]=\left[\begin{array}{ccc}-9 & 5 & 15\end{array}\right] ;(0,4,5)$
[D] $\left[\begin{array}{ccc}2 & 3 & 1 \\ 2 & -3 & -1 \\ 2 & -3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-9 \\ 5 \\ 15\end{array}\right] ;(-1,-4,5)$

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
5. $\left\{\begin{aligned} x-2 y+3 z & =-3 \\ -3 x+6 y-9 z & =9 \\ x+2 y+3 z & =-15\end{aligned}\right.$
[A] $\left[\begin{array}{ccc}1 & -2 & 3 \\ -3 & 6 & -9 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-3 \\ 9 \\ -15\end{array}\right] ;$ inverse $=0$; no solution.
[B] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & -2 & 3 \\ -3 & 6 & -9 \\ 1 & 2 & 3\end{array}\right]=\left[\begin{array}{ccc}-3 & 9 & -15\end{array}\right]$; dependent, infinitely many solutions.
$[\mathrm{C}]\left[\begin{array}{c}-3 \\ 9 \\ -15\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}1 & -2 & 3 \\ -3 & 6 & -9 \\ 1 & 2 & 3\end{array}\right] ;(4,-3,-4)$
[D] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 6 & 3 \\ 1 & -2 & 3\end{array}\right]=\left[\begin{array}{ccc}-3 & 9 & -15\end{array}\right] ;(3,3,6)$

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
6. $\left\{\begin{aligned} x-3 y-2 z & =-3 \\ 2 x-6 y-4 z & =-6 \\ x+3 y-2 z & =21\end{aligned}\right.$
[A] $\left[\begin{array}{ccc}1 & -3 & -2 \\ 2 & -6 & -4 \\ 1 & 3 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-3 \\ 5 \\ 21\end{array}\right]$; inverse $=0$; no solution.
[B] $\left[\begin{array}{c}-3 \\ 5 \\ 21\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}1 & -3 & -2 \\ 2 & -6 & -4 \\ 1 & 3 & -2\end{array}\right] ;(2,4,-4)$
[C] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & 3 & -2 \\ -1 & -6 & -2 \\ 1 & -3 & -2\end{array}\right]=\left[\begin{array}{lll}-3 & 5 & 21\end{array}\right] ;(1,-4,6)$
[D] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & -3 & -2 \\ 2 & -6 & -4 \\ 1 & 3 & -2\end{array}\right]=\left[\begin{array}{ccc}-3 & 5 & 21\end{array}\right]$; dependent, infinitely many solutions.

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
7. $\left\{\begin{array}{l}2 x+3 y-z=-3 \\ 2 x-3 y+z=-5 \\ 2 x-3 y-z=-9\end{array}\right.$
[A] $\left[\begin{array}{ccc}2 & 3 & -1 \\ 2 & -3 & 1 \\ 2 & -3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}-3 \\ -5 \\ -9\end{array}\right] ;(-2,1,2)$
[B] $\left[\begin{array}{l}-3 \\ -5 \\ -9\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}2 & 3 & -1 \\ 2 & -3 & 1 \\ 2 & -3 & -1\end{array}\right] ;$ dependent, infinitely many solutions.
$\left[\begin{array}{lll}\mathrm{C}\end{array} \mathrm{l} \begin{array}{lll}\mathrm{x} & z\end{array}\right]\left[\begin{array}{ccc}2 & -3 & -1 \\ -2 & -3 & -1 \\ 2 & 3 & -1\end{array}\right]=\left[\begin{array}{ccc}-3 & -5 & -9\end{array}\right] ;(-2,-1,0)$
[D] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}2 & 3 & -1 \\ 2 & -3 & 1 \\ 2 & -3 & -1\end{array}\right]=\left[\begin{array}{ccc}-3 & -5 & -9\end{array}\right]$; inverse $=0 ;$ no solution.

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
8. $\left\{\begin{array}{l}x+3 y-2 z=-14 \\ x+3 y+2 z=-6 \\ x-3 y-2 z=-2\end{array}\right.$
[A] $\left[\begin{array}{c}-14 \\ -6 \\ -2\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & 3 & 2 \\ 1 & -3 & -2\end{array}\right] ;(-3,-2,2)$
[B] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & -3 & -2 \\ -1 & 3 & -2 \\ 1 & 3 & -2\end{array}\right]=\left[\begin{array}{lll}-14 & -6 & -2\end{array}\right] ;(-4,2,0)$
[C] $\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & 3 & 2 \\ 1 & -3 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-14 \\ -6 \\ -2\end{array}\right] ;(-4,-2,2)$
[D] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & 3 & 2 \\ 1 & -3 & -2\end{array}\right]=\left[\begin{array}{ccc}-14 & -6 & -2\end{array}\right] ;(-3,2,2)$

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
9. $\left\{\begin{array}{l}x+2 y-3 z=-20 \\ x+2 y+3 z=-2 \\ x-2 y+3 z=10\end{array}\right.$
[A] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & 2 & -3 \\ 1 & 2 & 3 \\ 1 & -2 & 3\end{array}\right]=\left[\begin{array}{lll}-20 & -2 & 10\end{array}\right] ;(-4,3,3)$
[B] $\left[\begin{array}{c}-20 \\ -2 \\ 10\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}1 & 2 & -3 \\ 1 & 2 & 3 \\ 1 & -2 & 3\end{array}\right] ;(-4,-3,3)$
$\left[\begin{array}{lll}\mathrm{C}\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & -2 & -3 \\ -1 & 2 & -3 \\ 1 & 2 & 3\end{array}\right]=\left[\begin{array}{ccc}-20 & -2 & 10\end{array}\right] ;(-5,3,-1)$
[D] $\left[\begin{array}{ccc}1 & 2 & -3 \\ 1 & 2 & 3 \\ 1 & -2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-20 \\ -2 \\ 10\end{array}\right] ;(-5,-3,3)$

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
10. $\left\{\begin{aligned} x+3 y-2 z & =-22 \\ x-3 y+2 z & =16 \\ 2 x+6 y-4 z & =-44\end{aligned}\right.$
[A] $\left[\begin{array}{c}-22 \\ 16 \\ -44\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & -3 & 2 \\ 2 & 6 & -4\end{array}\right] ;(-2,-5,2)$
[B] $\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & -3 & 2 \\ 2 & 6 & -4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-22 \\ 16 \\ -44\end{array}\right]$; dependent, infinitely many solutions.
$[\mathrm{C}]\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & -3 & -2 \\ -1 & -3 & -2 \\ 2 & -3 & -4\end{array}\right]=\left[\begin{array}{lll}-22 & 16 & -44\end{array}\right] ;(-3,5,0)$
[D] $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & 3 & -2 \\ 1 & -3 & 2 \\ 2 & 6 & -4\end{array}\right]=\left[\begin{array}{ccc}-22 & 16 & -44\end{array}\right]$; inverse $=0$; no solution.
11. $\left\{\begin{array}{l}2 x-y=7 \\ -2 x+y=-7\end{array}\right.$
12. $\left\{\begin{array}{l}3 x+3 y=-24 \\ 3 x+3 y=-29\end{array}\right.$
13. $\left\{\begin{array}{l}7 x-5 y=-16 \\ 4 x+6 y=44\end{array}\right.$
14. $\left\{\begin{array}{l}5 x+5 y=-5 \\ 7 x+2 y=-32\end{array}\right.$

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
15. $\left\{\begin{array}{l}5 x+y=-33 \\ 2 x+4 y=-6\end{array}\right.$
16. $\left\{\begin{array}{l}4 x-6 y=-34 \\ 6 x+3 y=-15\end{array}\right.$
17. $\left\{\begin{array}{l}x+y=-1 \\ 3 x+3 y=-3\end{array}\right.$
18. $\left\{\begin{array}{l}3 x-5 y=31 \\ 3 x-5 y=37\end{array}\right.$
19. $\left\{\begin{array}{l}4 x-4 y=48 \\ 6 x+3 y=18\end{array}\right.$
20. $\left\{\begin{array}{l}2 x+6 y=-10 \\ 5 x+3 y=-13\end{array}\right.$
21. $\left\{\begin{array}{l}x+3 y+z=5 \\ 2 x+7 y+3 z=7 \\ x-y+2 z=-8\end{array}\right.$
22. $\left\{\begin{array}{l}x+2 y+z=13 \\ 3 x+7 y+4 z=43 \\ x-y-5 z=-2\end{array}\right.$
23. $\left\{\begin{array}{l}x+2 y+z=-15 \\ 3 x+7 y+2 z=-50 \\ x-y-6 z=10\end{array}\right.$

Write the system of equations as a matrix equation. Then solve the system, if possible, by using a matrix equation. If not possible, classify the system.
24. $\left\{\begin{array}{l}x+2 y+z=-15 \\ 3 x+7 y+4 z=-53 \\ x-y+4 z=-21\end{array}\right.$
25. $\left\{\begin{array}{l}x+3 y+z=19 \\ 2 x+7 y+2 z=42 \\ x-y-z=1\end{array}\right.$
26. $\left\{\begin{array}{l}x+2 y+z=-2 \\ 3 x+7 y+3 z=-8 \\ x-y+3 z=-2\end{array}\right.$
27. $\left\{\begin{array}{l}x+3 y+z=5 \\ 2 x+7 y-2 z=-11 \\ x-y+6 z=34\end{array}\right.$
28. $\left\{\begin{array}{l}x+3 y+z=16 \\ 2 x+7 y-4 z=62 \\ x-y+5 z=-24\end{array}\right.$
29. $\left\{\begin{array}{l}x+3 y+z=-14 \\ 2 x+7 y+3 z=-30 \\ x-y+2 z=9\end{array}\right.$
30. $\left\{\begin{array}{l}x+3 y+z=-13 \\ 2 x+7 y-4 z=-38 \\ x-y+z=11\end{array}\right.$

